Document Details

Atmospheric rivers drive flood damages in the western United States

Thomas William Corringham, F. Martin Ralph, Alexander Gershunov, Daniel R. Cayan, Cary A. Talbot | December 4, 2019
Summary

Atmospheric rivers (ARs) are extratropical storms that produce extreme precipitation on the west coasts of the world’s major landmasses. In the United States, ARs cause significant flooding, yet their economic impacts have not been quantified. Here, using 40 years of data from the National Flood Insurance Program, we show that ARs are the primary drivers of flood damages in the western United States. Using a recently developed AR scale, which varies from category 1 to 5, we find that flood damages increase exponentially with AR intensity and duration:

Each increase in category corresponds to a roughly 10-fold increase in damages. Category 4 and 5 ARs cause median damages in the tens and hundreds of millions of dollars, respectively. Rising population, increased development, and climate change are expected to worsen the risk of AR-driven flood damage in future decades.

Product Description

Atmospheric rivers (ARs) are extratropical storms that produce extreme precipitation on the west coasts of the world’s major landmasses. In the United States, ARs cause significant flooding, yet their economic impacts have not been quantified. Here, using 40 years of data from the National Flood Insurance Program, we show that ARs are the primary drivers of flood damages in the western United States. Using a recently developed AR scale, which varies from category 1 to 5, we find that flood damages increase exponentially with AR intensity and duration:

Each increase in category corresponds to a roughly 10-fold increase in damages. Category 4 and 5 ARs cause median damages in the tens and hundreds of millions of dollars, respectively. Rising population, increased development, and climate change are expected to worsen the risk of AR-driven flood damage in future decades.

Add to Downloads

Become a member to access this feature

Get Document


atmos-rivers-Science

Keywords:

atmospheric rivers, climate change, economic analysis, flood management, risk assessment