Amplified impacts of multi-year La Niñas on soil moisture compared to single-year La Niñas
Tingting Zhu, Jin-Yi Yu, Min-Hui Lo | August 14th, 2025
This study examines December-January-February (DJF) soil moisture responses to multi-year (MY) and single-year (SY) La Niñas using a 2200-year CESM1 simulation, AGCM experiments, and observational data. Four regions where MY La Niñas amplify SY La Niñas’ impacts on soil moisture were identified: North America, Australia, the Middle East, and the Sahel. SY La Niñas typically cause soil moisture drying in the Middle East and North America and wetting in Australia and the Sahel. MY La Niñas enhance these effects in the second DJF due to the strengthening of precipitation anomalies or the accumulation of precipitation-induced soil moisture anomalies, except in the Sahel where wetting is driven in part by evapotranspiration anomalies. Soil moisture variations are linked to La Niña-induced sea surface temperature changes in the Indian Ocean (for Australia and the Middle East) and the Pacific Ocean (for North America). These amplified effects are largely supported by the observed MY La Niña events from 1948 to 2022. These findings emphasize the need to integrate MY La Niñas into regional agriculture and water resource management strategies to better anticipate and mitigate their impacts.
Keywords