Document Details

The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

Isaac J. Winograd, Alan C. Riggs, Tyler B. Coplen | June 1, 1998
Summary

A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoic-age carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978–94 show that snowpacks were greatly enhanced during El Niño events.

Product Description

A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoic-age carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978–94 show that snowpacks were greatly enhanced during El Niño events.

Bulk Download

Become a member to access this feature

Get Document


Winograd-et-al-2

Keywords:

Groundwater Exchange, groundwater recharge, interbasin flow, transboundary aquifers