Document Details

Recent amplification of the North American winter temperature dipole

Deepti Singh, Daniel L. Swain, Justin S. Mankin, Daniel E. Horton, Leif N. Thomas, Bala Rajaratnam, Noah S. Diffenbaugh | September 1, 2016
Summary

During the winters of 2013–2014 and 2014–2015, anomalously warm temperatures in western North America and anomalously cool temperatures in eastern North America resulted in substantial human and environmental impacts. Motivated by the impacts of these concurrent temperature extremes and the intrinsic atmospheric linkage between weather conditions in the western and eastern United States, we investigate the occurrence of concurrent “warm-West/cool-East” surface temperature anomalies, which we call the “North American winter temperature dipole.” We find that, historically, warm-West/cool-East dipole conditions have been associated with anomalous mid-tropospheric ridging over western North America and downstream troughing over eastern North America. We also find that the occurrence and severity of warm-West/cool-East events have increased significantly between 1980 and 2015, driven largely by an increase in the frequency with which high-amplitude “ridge-trough” wave patterns result in simultaneous severe temperature conditions in both the West and East. Using a large single-model ensemble of climate simulations, we show that the observed positive trend in the warm-West/cool-East events is attributable to historical anthropogenic emissions including greenhouse gases, but that the co-occurrence of extreme western warmth and eastern cold will likely decrease in the future as winter temperatures warm dramatically across the continent, thereby reducing the occurrence of severely cold conditions in the East.

Although our analysis is focused on one particular region, our analysis framework is generally transferable to the physical conditions shaping different types of extreme events around the globe.

Product Description

During the winters of 2013–2014 and 2014–2015, anomalously warm temperatures in western North America and anomalously cool temperatures in eastern North America resulted in substantial human and environmental impacts. Motivated by the impacts of these concurrent temperature extremes and the intrinsic atmospheric linkage between weather conditions in the western and eastern United States, we investigate the occurrence of concurrent “warm-West/cool-East” surface temperature anomalies, which we call the “North American winter temperature dipole.” We find that, historically, warm-West/cool-East dipole conditions have been associated with anomalous mid-tropospheric ridging over western North America and downstream troughing over eastern North America. We also find that the occurrence and severity of warm-West/cool-East events have increased significantly between 1980 and 2015, driven largely by an increase in the frequency with which high-amplitude “ridge-trough” wave patterns result in simultaneous severe temperature conditions in both the West and East. Using a large single-model ensemble of climate simulations, we show that the observed positive trend in the warm-West/cool-East events is attributable to historical anthropogenic emissions including greenhouse gases, but that the co-occurrence of extreme western warmth and eastern cold will likely decrease in the future as winter temperatures warm dramatically across the continent, thereby reducing the occurrence of severely cold conditions in the East.

Although our analysis is focused on one particular region, our analysis framework is generally transferable to the physical conditions shaping different types of extreme events around the globe.

Bulk Download

Become a member to access this feature

Get Document


Singh_et_al-2016-Journal_of_Geophysical_Research__Atmospheres

Keywords:

climate change