Document Details

Projections of declining surface-water availability for the southwestern United States

Richard Seager, Mingfang Ting, Cuihua Li, Naomi Naik, Ben Cook, Jennifer Nakamura, Haibo Liu | December 23, 2012
Summary

Global warming driven by rising greenhouse-gas concentrations is expected to cause wet regions of the tropics and mid to high latitudes to get wetter and subtropical dry regions to get drier and expand polewards. Over southwest North America, models project a steady drop in precipitation minus evapotranspiration, PE, the net flux of water at the land surface, leading to, for example, a decline in Colorado River flow. This would cause widespread and important social and ecological consequences. Here, using new simulations from the Coupled Model Intercomparison Project Five, to be assessed in Intergovernmental Panel on Climate Change Assessment Report Five, we extend previous work by examining changes in P, E, runoff and soil moisture by season and for three different water resource regions. Focusing on the near future, 2021–2040, the new simulations project declines in surface-water availability across the southwest that translate into reduced soil moisture and runoff in California and Nevada, the Colorado River headwaters and Texas.

Product Description

Global warming driven by rising greenhouse-gas concentrations is expected to cause wet regions of the tropics and mid to high latitudes to get wetter and subtropical dry regions to get drier and expand polewards. Over southwest North America, models project a steady drop in precipitation minus evapotranspiration, PE, the net flux of water at the land surface, leading to, for example, a decline in Colorado River flow. This would cause widespread and important social and ecological consequences. Here, using new simulations from the Coupled Model Intercomparison Project Five, to be assessed in Intergovernmental Panel on Climate Change Assessment Report Five, we extend previous work by examining changes in P, E, runoff and soil moisture by season and for three different water resource regions. Focusing on the near future, 2021–2040, the new simulations project declines in surface-water availability across the southwest that translate into reduced soil moisture and runoff in California and Nevada, the Colorado River headwaters and Texas.

Bulk Download

Become a member to access this feature

Get Document


SEAGER-ET-AL-COVER

Keywords:

climate change, Colorado River, modeling, water supply forecasting