Document Details

Moisture vs. Wind-Dominated Flavors of Atmospheric Rivers

Katerina R. Gonzales, Daniel L. Swain, Elizabeth A. Barnes, Noah S. Diffenbaugh | November 20th, 2020


Atmospheric rivers (ARs) are essential features of the global water cycle. Although AR definitions are commonly based on integrated vapor transport (IVT), ARs of a given IVT can induce a wide range of surface precipitation and wind impacts. We develop an AR “flavor” metric that partitions AR IVT into moisture-dominant and wind-dominant components. We use this metric to create a climatological catalog of “wet” and “windy” ARs along the U.S. West Coast from 1980 to 2016. Windy ARs are generally associated with stronger surface winds than are wet ARs, with the largest differences at low IVT. Windy ARs are also associated with greater daily precipitation totals than are wet ARs, with the difference widening at higher IVT, notably over mountainous regions. Pacific Northwest ARs have become increasingly moisture dominated over 1980–2016, which has important implications for western U.S. water availability and flood risk.

Keywords

atmospheric rivers