Document Details

Driving forces of land surface temperature anomalous changes in North America in 2002–2018

Yibo Yan, Jiancheng Shi, Kebiao Mao, Shilong Piao, Xinyi Shen, Jeff Dozier, Yungang Liu, Hong-li Ren, Qing Bao | April 24, 2020
Summary

The land surface temperature (LST) changes in North America are very abnormal recently, but few studies have systematically researched these anomalies from several aspects, especially the influencing forces. After reconstructing higher quality MODIS monthly LST data (0.05° * 0.05°) in 2002–2018, we analyzed the LST changes especially anomalous changes and their driving forces in North America. Here we show that North America warmed at the rate of 0.02 °C/y. The LST changes in three regions, including frigid region in the northwestern (0.12 °C/y), the west coast from 20°N–40°N (0.07 °C/y), and the tropics south of 20°N (0.04 °C/y), were extremely abnormal. The El Nino and La Nina were the main drivers for the periodical highest and lowest LST, respectively. The North Atlantic Oscillation was closed related to the opposite change of LSt in the northeastern north America and the southeastern United States, and the warming trend of the Florida peninsula in winter was closely related to enhancement of the North Atlantic Oscillation index. The Pacific Decadal Oscillation index showed a positive correlation with the LST in most Alaska. Vegetation and atmospheric water vapor also had a profound influence on the LST changes, but it had obvious difference in latitude.

Product Description

The land surface temperature (LST) changes in North America are very abnormal recently, but few studies have systematically researched these anomalies from several aspects, especially the influencing forces. After reconstructing higher quality MODIS monthly LST data (0.05° * 0.05°) in 2002–2018, we analyzed the LST changes especially anomalous changes and their driving forces in North America. Here we show that North America warmed at the rate of 0.02 °C/y. The LST changes in three regions, including frigid region in the northwestern (0.12 °C/y), the west coast from 20°N–40°N (0.07 °C/y), and the tropics south of 20°N (0.04 °C/y), were extremely abnormal. The El Nino and La Nina were the main drivers for the periodical highest and lowest LST, respectively. The North Atlantic Oscillation was closed related to the opposite change of LSt in the northeastern north America and the southeastern United States, and the warming trend of the Florida peninsula in winter was closely related to enhancement of the North Atlantic Oscillation index. The Pacific Decadal Oscillation index showed a positive correlation with the LST in most Alaska. Vegetation and atmospheric water vapor also had a profound influence on the LST changes, but it had obvious difference in latitude.

Bulk Download

Become a member to access this feature

Get Document


Yan-et-al

Keywords:

climate change, modeling