Document Details

Climatic regulation of the neurotoxin domoic acid

A. Michelle Wood, Angelicque E. White, Vera L. Trainer, William Peterson, S. Morgaine McKibben, Matthew Hunter | January 9, 2017
Summary

Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions.

Product Description

Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions.

Bulk Download

Become a member to access this feature

Get Document


Domoic-acid-PNAS

Keywords:

climate change, ecosystem management, fisheries, water quality